ÌâÄ¿ÄÚÈÝ

1£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬ÇÒÒÔ×ø±êÔ­µãΪԲÐÄ£¬ÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïß$x-y+\sqrt{2}=0$ÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÈôÒ»Ìõ²»¹ýÔ­µãµÄÖ±ÏßlÓëÍÖÔ²ÏཻÓÚA£¬BÁ½µã£¬ÉèÖ±ÏßOA£¬l£¬OBµÄбÂÊ·Ö±ðΪk1£¬k£¬k2£¬ÇÒk1£¬k£¬k2Ç¡ºÃ¹¹³ÉµÈ±ÈÊýÁУ®Çó|OA|2+|OB|2µÄÖµ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬ÒÔ×ø±êÔ­µãΪԲÐÄ£¬ÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïß$x-y+\sqrt{2}=0$ÏàÇУ¬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬´úÈëÍÖÔ²·½³Ì£¬µÃ£¨1+4k2£©x2+8kmx+4m2-4=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢¸ùµÄÅбðʽ¡¢µÈ±ÈÊýÁС¢ÍÖÔ²ÐÔÖÊ£¬½áºÏÒÑÌñÖªÌõ¼þÄÜÇó³ö|OA|2+|OB|2µÄÖµ£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬
¡àÓÉÌâÒâÖªe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬¡àe2=$\frac{{c}^{2}}{{a}^{2}}=\frac{\sqrt{{a}^{2}-{b}^{2}}}{{a}^{2}}$=$\frac{3}{4}$£¬
ÕûÀí£¬µÃa2=4b2£¬¡àa=2b£¬
ÓÖ¡ßÒÔ×ø±êÔ­µãΪԲÐÄ£¬ÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïß$x-y+\sqrt{2}=0$ÏàÇУ¬
¡àb=$\frac{\sqrt{2}}{\sqrt{1+1}}$=1£¬¡àa=2£¬
¹ÊÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+{y}^{2}$=1£®
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉÖ±ÏßlµÄ·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥yµÃ£º£¨1+4k2£©x2+8kmx+4m2-4=0£¬
¡àx1+x2=-$\frac{8km}{1+4{k}^{2}}$£¬x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$£¬ÇÒ¡÷=16£¨1+4k2-m2£©£¾0£¬
¡ßk1¡¢k¡¢k2Ç¡ºÃ¹¹³ÉµÈ±ÈÊýÁУ®
¡àk2=k1k2=$\frac{£¨k{x}_{1}+m£©£¨k{x}_{2}+m£©}{{x}_{1}{x}_{2}}$£¬
¡à-4k2m2+m2=0£¬
¡àk=¡À$\frac{1}{2}$£¬
´Ëʱ¡÷=16£¨2-m2£©£¾0£¬¼´m¡Ê£¨-$\sqrt{2}$£¬$\sqrt{2}$£©£¬
¡àx1+x2=¡À2m£¬x1x2=2m2-2
¡à|OA|2+|OB|2=${{x}_{1}}^{2}+{{y}_{1}}^{2}+{{x}_{2}}^{2}+{{y}_{2}}^{2}$=$\frac{3}{4}$[£¨x1+x2£©2-2x1x2]+2=5£¬
¡à|OA|2+|OB|2ÊǶ¨ÖµÎª5£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²é´úÊýºÍΪ¶¨ÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢¸ùµÄÅбðʽ¡¢µÈ±ÈÊýÁС¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø