题目内容
如图,多面体中,两两垂直,且,.
(1)若点在线段上,且,求证:;
(2)求多面体的体积.
已知正项数列为等比数列,且是与的等差中项,若,则该数列的前5项的和为( )
A. B.31 C. D.以上都不正确
某家庭进行理财投资,根据长期收益率市场预测,投资类产品的收益与投资额成正比,投资类产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.
(1)分别写出两类产品的收益与投资额的函数关系;
(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
已知椭圆过点,离心率为,点分别为其左右焦点.
(1)求椭圆的标准方程;
(2)若上存在两个点,椭圆上有两个点满足三点共线,三点共线,且,求四边形面积的最小值.
已知是定义在实数集上的函数,且 ,,则 = __________.
选修4—4:坐标系与参数方程选讲.
已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极
坐标系,圆的极坐标方程为.
(1)求圆的直角坐标方程;
(2)若是直线与圆面的公共点,求的取值范围.
某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85.
(1)计算甲班7位学生成绩的方差;
(2)从成绩在90分以上的学生中随机抽取两名学生,求甲班、乙班各一人的概率.
已知;.
(1)若p是q的必要条件,求m的取值范围;
(2)若是的必要不充分条件,求m的取值范围.
设平面向量,,且,则实数的值是( )
A. B. C. D.