题目内容

设正整数数列{an}满足:a2=4,且对于任何n∈N*,有2+
1
an+1
1
an
+
1
an+1
1
n
-
1
n+1
<2+
1
an
,则a10=
100
100
分析:利用2+
1
an+1
1
an
+
1
an+1
1
n
-
1
n+1
<2+
1
an
,代入计算,可得结论.
解答:解:∵2+
1
an+1
1
an
+
1
an+1
1
n
-
1
n+1
<2+
1
an
,a2=4,
∴n=1时,2+
1
4
2
a1
+
2
4
<2+
1
a1
,解得
2
3
<a1<
8
7

∵a1为正整数,∴a1=1.
当n=2时,由2+
1
a3
<6(
1
4
+
1
a3
)<2+
1
4
,解得8<a3<10,所以a3=9.
同理可得a4=16;a5=25;a6=36;a7=49;a8=64;a9=81;a10=100.
故答案为:100
点评:本题考查不等式,考查赋值法的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网