题目内容

(本小题满分14分)

设正整数数列{an}满足:a2=4,且对于任何

nN*,有

   (1)求a1a3

   (2)求数列{ an }的通项an

 

【答案】

(1)

(2)对任意

【解析】解:(1)据条件得    ①

时,由,即有

解得.因为为正整数,故

时,由

解得,所以

(2)方法一:由,猜想:

下面用数学归纳法证明.

1时,由(1)知均成立;

2假设成立,则,则

由①得

因为时,,所以

,所以

,所以

,即时,成立.

由1,2知,对任意

(2)方法二:

,猜想:

下面用数学归纳法证明.

1时,由(1)知均成立;

2假设成立,则,则

由①得

                            ②

由②左式,得,即,因为两端为整数,

.于是    ③

又由②右式,

因为两端为正整数,则

所以

又因时,为正整数,则    ④

据③④,即时,成立.

由1,2知,对任意

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网