题目内容
7.规定:A${\;}_{x}^{m}$=x(x-1)…(x-m+1),其中x∈R,m为正整数,且A${\;}_{x}^{0}$=1,这是排列数A${\;}_{n}^{m}$(n,m是正整数,且m≤n)的一个推广,则A${\;}_{-10}^{3}$=-1320.分析 根据题目中所给的公式,代入计算即可.
解答 解:∵A${\;}_{x}^{m}$=x(x-1)…(x-m+1),
∴A${\;}_{-10}^{3}$=-10×(-10-1)×(-10-2)=-1320.
故答案为:-1320.
点评 本题考查了根据所给的概念进行计算的问题,解题时要认真分析所给概念的含义,是基础题目.
练习册系列答案
相关题目
17.已知集合M={-2,-1,0,1},N={x|1≤2x≤4,x∈Z},则M∩N=( )
| A. | {-2,-1,0,1,2} | B. | {0,1} | C. | {-1,0,1} | D. | {-1,0,1,2} |
15.班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表.
若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望.
(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表.
| 学生序号i | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 数学成绩xi | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
| 物理成绩yi | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
2.若y=sin$\frac{2π}{3}$,则y′=( )
| A. | -$\frac{\sqrt{3}}{2}$ | B. | 0 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
17.光线沿着直线y=-3x+b射到直线x+y=0上,经反射后沿着直线y=ax+2射出,则有( )
| A. | a=$\frac{1}{3}$,b=6 | B. | a=-$\frac{1}{3}$,b=-6 | C. | a=3,b=-$\frac{1}{6}$ | D. | a=-3,b=$\frac{1}{6}$ |