题目内容
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| OA |
| OF |
| OP |
| OA |
| OB |
| 1 |
| 4 |
(1)求双曲线的方程;
(2)过点C(0,-2)的直线l交该双曲线与不同两点M,N,求
| OM |
| ON |
分析:(1)由已知,点B,F,P的坐标分别为B(0,-b),F(c,0),P(c,
),由2
=
+
,知点A的坐标为(c,
),
=(c,
),
=(0,-b),由
•
=-
,知a=2b3.由此能求出双曲线方程.
(2)设直线l的方程为y=kx-2,联立方程组
,得(1-4k2)x2+16kx-20=0,设M(x1,y1),N(x2,y2),由
,解得k2<
,且k2≠
,x1+x2=
,x1x2=
,所以
•
=x1x2+y1y2=1+
,由此能求出
•
的范围.
| b2 |
| a |
| OA |
| OF |
| OP |
| b2 |
| 2a |
| OA |
| b2 |
| 2a |
| OB |
| OA |
| OB |
| 1 |
| 4 |
(2)设直线l的方程为y=kx-2,联立方程组
|
|
| 5 |
| 4 |
| 1 |
| 4 |
| 16k |
| 4k2-1 |
| 20 |
| 4k2-1 |
| OM |
| ON |
| 17 |
| 4k2-1 |
| OM |
| ON |
解答:解:(1)由已知,点B,F,P的坐标分别为B(0,-b),F(c,0),P(c,
),
∵2
=
+
,
∴点A的坐标为(c,
),
则
=(c,
),
=(0,-b),
∵
•
=-
,∴
•(-b)=-
,即a=2b3.
∵e=
=
,∴c=
a,b=
=
a,
∴a=2,b=1,
故双曲线方程为
-y2=1.
(2)由题设知直线l的斜率存在,设直线l的方程为y=kx-2,
联立方程组
,得(1-4k2)x2+16kx-20=0,
设M(x1,y1),N(x2,y2),
由
,解得k2<
,且k2≠
,
∴x1+x2=
,x1x2=
,
∴
•
=x1x2+y1y2
=x1•x2+(kx1-2)(kx2-2)
=(1+k2)x1x2-2k(x1+x2)+4
=
-
+4
=
=1+
,
∵0≤k2<
,且k2≠
,
∴
∈(-∞,-17]∪(
,+∞),
∴
•
的范围是(-∞,-16]∪(
,+∞).
| b2 |
| a |
∵2
| OA |
| OF |
| OP |
∴点A的坐标为(c,
| b2 |
| 2a |
则
| OA |
| b2 |
| 2a |
| OB |
∵
| OA |
| OB |
| 1 |
| 4 |
| b2 |
| 2a |
| 1 |
| 4 |
∵e=
| c |
| a |
| ||
| 2 |
| ||
| 2 |
(
|
| 1 |
| 2 |
∴a=2,b=1,
故双曲线方程为
| x2 |
| 4 |
(2)由题设知直线l的斜率存在,设直线l的方程为y=kx-2,
联立方程组
|
设M(x1,y1),N(x2,y2),
由
|
| 5 |
| 4 |
| 1 |
| 4 |
∴x1+x2=
| 16k |
| 4k2-1 |
| 20 |
| 4k2-1 |
∴
| OM |
| ON |
=x1•x2+(kx1-2)(kx2-2)
=(1+k2)x1x2-2k(x1+x2)+4
=
| 20(1+k2) |
| 4k2-1 |
| 32k2 |
| 4k2-1 |
=
| 4k2+16 |
| 4k2-1 |
=1+
| 17 |
| 4k2-1 |
∵0≤k2<
| 5 |
| 4 |
| 1 |
| 4 |
∴
| 17 |
| 4k2-1 |
| 17 |
| 4 |
∴
| OM |
| ON |
| 21 |
| 4 |
点评:本题考查直线和双曲线的位置关系的综合运用,考查推理论证能力,考查计算求解能力,考查转化化归思想.解题时要认真审题,仔细解答,注意培养计算能力.
练习册系列答案
相关题目