题目内容

9.若f′(x0)=1,则$\underset{lim}{△x→0}$$\frac{f({x}_{0}+2△x)-f({x}_{0}-△x)}{△x}$=3.

分析 根据导数的定义可得$\underset{lim}{△x→0}$$\frac{f({x}_{0}+2△x)-f({x}_{0}-△x)}{△x}$=3f'(x0)=3.

解答 解:根据函数f(x)在x0处导数的定义知,
f'(x0)=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+2△x)-f({x}_{0}-△x)}{({x}_{0}+2△x)-({x}_{0}-△x)}$
=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+2△x)-f({x}_{0}-△x)}{3△x}$
=$\frac{1}{3}$•$\underset{lim}{△x→0}$$\frac{f({x}_{0}+2△x)-f({x}_{0}-△x)}{△x}$,
所以,$\underset{lim}{△x→0}$$\frac{f({x}_{0}+2△x)-f({x}_{0}-△x)}{△x}$=3f'(x0)=3,
故填:3.

点评 本题主要考查了函数在某一点处导数的定义,合理进行恒等变形是解决本题的关键,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网