题目内容
10.设等差数列{an}的前n项和为Sn,若a1=1,S4=22,则S6=( )| A. | 49 | B. | 51 | C. | 53 | D. | 55 |
分析 利用等差数列的通项公式及其前n项和公式即可得出.
解答 解:设等差数列{an}的公差为d,∵a1=1,S4=22,
∴$4×1+\frac{4×3}{2}$d=22,解得d=3.
则S6=6×1+$\frac{6×5}{2}×3$=51.
故选:B.
点评 本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
18.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B同时发生的概率是( )
| A. | $\frac{5}{12}$ | B. | $\frac{7}{12}$ | C. | $\frac{1}{12}$ | D. | $\frac{3}{4}$ |
5.已知函数f(x)=cosx+ax2-1,a∈R,若对于任意的实数x恒有f(x)≥0,则实数a的取值范围是( )
| A. | [$\frac{1}{2}$,+∞) | B. | ($\frac{1}{2}$,+∞) | C. | [-$\frac{1}{4}$,+∞) | D. | ($\frac{1}{4}$,+∞) |
2.若f(x)在x0处连接,则下列命题中正确的是( )
| A. | 若f(x0)是f(x)的极值,则f(x)在x0处可导且f′(x0)=0 | |
| B. | 若曲线y=f(x)在x0附近的左侧切线斜率为正,右侧切线斜率为负,则f(x0)是f(x)的极大值 | |
| C. | 若曲线y=f(x)在x0附近的左侧切线斜率为负,右侧切线斜率为正,则f(x0)是f(x)的极大值 | |
| D. | 若f′(x0)=0,则f(x0)必是f(x)的极值 |