题目内容
若,,,则 ( )
A B C D
A
在直三棱柱中,,,且异面直线与 所成的角等于,设.
(Ⅰ)求的值;
(Ⅱ)求平面与平面所成的锐二面角的大小.
)已知角终边上一点P(-4,3),求的值
已知函数,若成立,则=______
在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD, EF // AB,
∠BAF=90º, AD= 2,AB=AF=2EF =1,点P在棱DF上.
(Ⅰ)若P是DF的中点
(ⅰ) 求证:BF // 平面ACP
(ⅱ) 求异面直线BE与CP所成角的余弦值
(Ⅱ)若二面角D-AP-C的余弦值为,求PF的长度.
设,则 ( )
A. f(x)与g(x)都是奇函数 B. f(x)是奇函数,g(x)是偶函数
C. f(x)与g(x)都是偶函数 D. f(x)是偶函数,g(x)是奇函数
求值
曲线y=x3-2x+4在点(1,3)处的切线方程
设,. 随机变量取值、、、、的概率均为0.2,随机变量取值、、、、的概率也为0.2.
若记、分别为、的方差,则 ( )
A.>. B.=. C.<.
D.与的大小关系与、、、的取值有关.