题目内容
“两条直线不相交”是“两条直线是异面直线”的 条件.(填 “充分不必要”、“必要不充分”、“充要”、“既不必要又不充分”中的一个)
某品牌汽车4店经销三种排量的汽车,其中三种排量的汽车依次有5,4,3款不同车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能.
(1)求该单位购买的3辆汽车均为种排量汽车的概率;
(2)记该单位购买的3辆汽车的排量种数为,求的分布列及数学期望.
如图,平行四边形中,,,,。
(1)用表示;
(2)若,,,分别求和的值。
若对于给定的负实数,函数的图象上总存在点C,使得以C为圆心,1为半径的圆上有两上不同的点到原点的距离为2,则的取值范围为 .
已知函数,其中是实数,设为该函数的图象上的两点,且.
⑴指出函数的单调区间;
⑵若函数的图象在点处的切线互相垂直,且,求的最小值;
⑶若函数的图象在点处的切线重合,求的取值范围.
已知正数满足,则的最小值为 .
如图,四棱锥S﹣ABCD的底面为正方形,SD⊥平面ABCD,SD=AD=2,请建立空间直角坐标系解决下列问题.
(1)求证:;(2)求直线与平面所成角的正弦值.
已知函数,若、满足,且恒成立,则的最小值为 .
已知,,求的值;