题目内容
【题目】已知抛物线
:
,其焦点到准线的距离为2.直线
与抛物线
交于
,
两点,过
,
分别作抛物线
的切线
与
,
与
交于点
.
(1)求抛物线
的标准方程;
(2)若
,求
面积的最小值.
【答案】(1)
;(2)4.
【解析】
(1)根据焦点到准线的距离为
,即可得到抛物线的方程;
(2)利用导数求出抛物线的两条切线方程,再利用直线垂直,得到斜率相乘为
,从而求得直线
方程为
,再利用弦长公式和点到直线的距离公式,即可得答案;
(1)由题意知,抛物线焦点为:
,准线方程为
,
焦点到准线的距离为2,即
,
所以抛物线的方程为
.
(2)抛物线的方程为
,即
,所以
.
设
,
,
:
,
:
.
由于
,所以
,即
.
设直线
方程为
,与抛物线方程联立,得
,所以
.
,
,
,所以
,即
:
.
联立方程
,得
,即
.
点到直线
的距离
.
,
所以
.
当
时,
面积取得最小值4.
练习册系列答案
相关题目
【题目】某公司A产品生产的投入成本x(单位:万元)与产品销售收入y(单位:十万元)存在较好的线性关系,下表记录了该公司最近8次该产品的相关数据,且根据这8组数据计算得到y关于x的线性回归方程为
.
x(万元) | 6 | 7 | 8 | 11 | 12 | 14 | 17 | 21 |
y(十万元) | 1.2 | 1.5 | 1.7 | 2 | 2.2 | 2.4 | 2.6 | 2.9 |
(1)求
的值(结果精确到0.0001),并估计公司A产品投入成本30万元后产品的销售收入(单位:十万元).
(2)该公司B产品生产的投入成本u(单位:万元)与产品销售收入v(单位:十万元)也存在较好的线性关系,且v关于u的线性回归方程为
.
(i)估计该公司B产品投入成本30万元后的毛利率(毛利率
);
(ii)判断该公司A,B两个产品都投入成本30万元后,哪个产品的毛利率更大.