题目内容

14.已知3tan$\frac{α}{2}$+$ta{n}^{2}\frac{α}{2}$=1,sinβ=3sin(2α+β),则tan(α+β)=(  )
A.$\frac{4}{3}$B.-$\frac{4}{3}$C.-$\frac{2}{3}$D.-3

分析 由已知式子可得sin[(α+β)-α]=3sin[(α+β)+α],保持整体展开变形可得tan(α+β)=-2tanα,再由3tan$\frac{α}{2}$+$ta{n}^{2}\frac{α}{2}$=1和二倍角的正切公式可得tanα的值,代入计算可得.

解答 解:∵sinβ=3sin(2α+β),
∴sin[(α+β)-α]=3sin[(α+β)+α],
∴sin(α+β)cosα-cos(α+β)sinα=3sin(α+β)cosα+3cos(α+β)sinα,
∴2sin(α+β)cosα=-4cos(α+β)sinα,
∴tan(α+β)=$\frac{sin(α+β)}{cos(α+β)}$=-$\frac{4sinα}{2cosα}$=-2tanα,
又∵3tan$\frac{α}{2}$+$ta{n}^{2}\frac{α}{2}$=1,∴3tan$\frac{α}{2}$=1-$ta{n}^{2}\frac{α}{2}$,
∴tanα=$\frac{2tan\frac{α}{2}}{1-ta{n}^{2}\frac{α}{2}}$=$\frac{2}{3}$,∴tan(α+β)=-2tanα=-$\frac{4}{3}$,
故选:B.

点评 本题考查两角和与差的正切函数,涉及二倍角公式和整体的思想,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网