题目内容
设集合A={x|0≤x-m≤3},B={x|x<0或x>3},A∩B=A,求实数m的取值范围.
A={x|0≤x-m≤3}={x|m≤x≤m+3},
∵A∩B=A,
∴A⊆B,
∴m>3或m+3<0,
∴m>3或m<-3.
实数m的取值范围m>3或m<-3.
∵A∩B=A,
∴A⊆B,
∴m>3或m+3<0,
∴m>3或m<-3.
实数m的取值范围m>3或m<-3.
练习册系列答案
相关题目
设集合A={x|0≤x≤3},B={x|x2-3x+2≤0,x∈Z},则A∩B等于( )
| A、(-1,3) | B、[1,2] | C、{0,1,2} | D、{1,2} |