题目内容
已知λ,θ∈R,向量
=(cosλθ,cos(10-λ)θ),
=(sin(10-λ)θ,sinλθ),
(Ⅰ)求|
|2+|
|2的值
(Ⅱ)如果θ=
,求证:
∥
.
| a |
| b |
(Ⅰ)求|
| a |
| b |
(Ⅱ)如果θ=
| π |
| 20 |
| a |
| b |
考点:向量的模,平行向量与共线向量
专题:平面向量及应用
分析:(1)利用向量数量积的性质即可得出;
(2)利用向量共线定理即可得出.
(2)利用向量共线定理即可得出.
解答:
(1)解:|
|2+|
|2=cos2λθ+cos2(10-λ)θ+sin2(10-λ)θ+sin2λθ=2;
(2)证明:∵cos(10-λ)θsin(10-λ)θ-cosλθsinλθ
=
sin(20-2λ)θ-
sin2λθ
=
sin(20-2λ)
-
sin2λ•
=
sin(π-
)-
sin
=
sin
-
sin
=0.
∴
∥
.
| a |
| b |
(2)证明:∵cos(10-λ)θsin(10-λ)θ-cosλθsinλθ
=
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| π |
| 20 |
| 1 |
| 2 |
| π |
| 20 |
=
| 1 |
| 2 |
| λπ |
| 10 |
| 1 |
| 2 |
| λπ |
| 10 |
=
| 1 |
| 2 |
| λπ |
| 10 |
| 1 |
| 2 |
| λπ |
| 10 |
=0.
∴
| a |
| b |
点评:本题考查了向量数量积的性质、向量共线定理,属于基础题.
练习册系列答案
相关题目
| A、log316 |
| B、256 |
| C、16 |
| D、4 |