题目内容

在平面直角坐标系xoy 中,点M 到两定点F1(-1,0)和F2(1,0)的距离之和为4,设点M 的轨迹是曲线C.
(1)求曲线C 的方程;   
(2)若直线l:y=kx+m 与曲线C 相交于不同两点A、B (A、B 不是曲线C 和坐标轴的交点),以AB 为直径的圆过点D(2,0),试判断直线l 是否经过一定点,若是,求出定点坐标;若不是,说明理由.
【答案】分析:(1)由椭圆的定义可知,点M的轨迹C是以两定点F1(-1,0)和F2(1,0)为焦点,长半轴长为2的椭圆,由此可得曲线C的方程;   
(2)直线y=kx+m代入椭圆方程,利用韦达定理,结合以AB为直径的圆过点D(2,0),即可求得结论.
解答:解:(1)设M(x,y),由椭圆的定义可知,点M的轨迹C是以两定点F1(-1,0)和F2(1,0)为焦点,长半轴长为2的椭圆
∴短半轴长为=
∴曲线C的方程为;   
(2)设A(x1,y1),B(x2,y2),则
直线y=kx+m代入椭圆方程,消去y可得(3+4k2)x2+8mkx+4(m2-3)=0
∴x1+x2=-,x1x2=
∴y1y2=(kx1+m)(kx2+m)=
∵以AB为直径的圆过点D(2,0),
∴kADkBD=-1
∴y1y2+x1x2-2(x1+x2)+4=0

∴7m2+16mk+4k2=0
∴m=-2k或m=-,均满足△=3+4k2-m2>0
当m=-2k时,l的方程为y=k(x-2),直线过点(2,0),与已知矛盾;
当m=-时,l的方程为y=k(x-),直线过点(,0),
∴直线l过定点,定点坐标为(,0).
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网