ÌâÄ¿ÄÚÈÝ
8£®ÒÑÖªA1£¬A2£¬B1£¬B2·Ö±ðΪ˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÊµÖáÓëÐéÖáµÄÁ½¸ö¶Ëµã£¬P£¨4£¬$\sqrt{2}$£©ÎªË«ÇúÏßÉÏÒ»µã£¬ÇÒÂú×ãk${\;}_{{A}_{1}P}$•k${\;}_{{A}_{2}P}$=$\frac{1}{4}$£®£¨1£©ÇóË«ÇúÏߵıê×¼·½³Ì£»
£¨2£©¹ýµãQ£¨2£¬2£©µÄÖ±ÏßlÓë¸ÃË«ÇúÏßÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇóÖ±ÏßlµÄ·½³Ì£®
·ÖÎö £¨1£©Çó³ö¼¸ºÎÁ¿a£¬b£¬¼´¿ÉÇóË«ÇúÏߵıê×¼·½³Ì£»
£¨2£©¹ýµãQ£¨2£¬2£©µÄÖ±ÏßlÓë¸ÃË«ÇúÏßÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬·ÖÀàÌÖÂÛ£¬ÇóÖ±ÏßlµÄ·½³Ì£®
½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬$\frac{\sqrt{2}}{4+a}•\frac{\sqrt{2}}{4-a}=\frac{1}{4}$£¬¡àa2=8£¬
¡ßP£¨4£¬$\sqrt{2}$£©ÎªË«ÇúÏßÉÏÒ»µã£¬
¡à$\frac{16}{8}-\frac{2}{{b}^{2}}$=1£¬¡àb2=2£¬
¡àË«ÇúÏߵıê×¼·½³ÌΪ$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{2}$=1£»
£¨2£©ÓÉÌâÒâ¿ÉµÃ£ºË«ÇúÏߵĽ¥½üÏß·½³ÌΪ£ºy=¡À$\frac{1}{2}$x£¬
¢Ù¹ýµãQ£¨2£¬2£©Æ½ÐÐÓÚ½¥½üÏßʱ£¬Ö±ÏßlÓëË«ÇúÏßÖ»ÓÐÒ»¸ö¹«¹²µã£¬
·½³ÌΪy-2=¡À$\frac{1}{2}$£¨x-2£©£¬¼´x-2y+2=0»òx+2y-6=0£»
¢ÚÉè¹ýQ£¨2£¬2£©µÄÇÐÏß·½³ÌΪy-2=k£¨x-2£©ÓëË«ÇúÏßÁªÁ¢£¬
¿ÉµÃ£¨1-4k2£©x2-£¨16k2-16k£©x-4£¨4k2-8k+6£©=0£¬
ÀûÓá÷=0¿ÉµÃk=$\frac{-1¡À\sqrt{10}}{2}$£¬·½³ÌΪy-2=$\frac{-1¡À\sqrt{10}}{2}$£¨x-2£©£®
¹ÊÖ±ÏßlµÄ·½³ÌΪx-2y+2=0»òx+2y-6=0»òy-2=$\frac{-1¡À\sqrt{10}}{2}$£¨x-2£©£®
µãÆÀ ±¾ÌâÒÔË«ÇúÏßÎªÔØÌ壬Ö÷Òª¿¼²éÁËÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌ⣮ͻ³ö¿¼²éÁËË«ÇúÏߵļ¸ºÎÐÔÖÊ£®
| A£® | f£¨2a£©£¼f£¨3£©£¼f£¨log2a£© | B£® | f£¨3£©£¼f£¨log2a£©£¼f£¨2a£© | C£® | f£¨log2a£©£¼f£¨3£©£¼f£¨2a£© | D£® | f£¨log2a£©£¼f£¨2a£©£¼f£¨3£© |
| A£® | 55 | B£® | 30 | C£® | 20 | D£® | 10 |
| A£® | $\frac{4}{3}$ | B£® | $\frac{4}{5}$ | C£® | $-\frac{4}{5}$ | D£® | $-\frac{4}{3}$ |
£¨1£©Ç󼯺ÏM¡ÉN£¬M¡ÈN£»
£¨2£©Ç󼯺Ï∁UN£¬£¨∁UN£©¡ÉM£®
| A£® | f'£¨x£©=$-\frac{e^x}{x}$ | B£® | f'£¨x£©=$\frac{{x{e^x}-{e^x}}}{x^2}$ | C£® | f'£¨x£©=$\frac{{x{e^x}+{e^x}}}{x^2}$ | D£® | f'£¨x£©=$\frac{{x{e^x}-{e^x}}}{x}$ |