题目内容

9.对于任意实数x,[x]表示不超过x的最大整数,如[-0,2]=-1,[1.72]=1,已知${a_n}=[{\frac{n}{3}}]({n∈{N^*}}),{S_n}$为数列{an}的前项和,则S2017=677712.

分析 利用n∈N*,an=[$\frac{n}{3}$],可得S3n=3[0+1+2+…+(n-1)]+n=$\frac{3}{2}$n2-$\frac{n}{2}$,由2017=3×672+1,即可求得S2016,由a2017=672,S2017=S2016+a2017,即可求得S2017

解答 解:∵n∈N*,an=[$\frac{n}{3}$],
∴n=3k,k∈N*时,a3k=k;
n=3k+1,k∈N时,a3k+1=k;
n=3k+2,k∈N时,a3k+2=k.
S3n=3[0+1+2+…+(n-1)]+n=3×$\frac{[1+(n+1)](n-1)}{2}$=$\frac{3}{2}$n2-$\frac{n}{2}$,
由2017=3×672+1,
∴S2016=S3×672=$\frac{3}{2}$×6722-$\frac{672}{2}$=677040,
a2017=672,
S2017=S2016+a2017=677040+672=677712,
故答案为:677712.

点评 本题主要考查数列与函数的综合运用,主要涉及了数列的推导与归纳,是新定义题,应熟悉定义,将问题转化为已知去解决,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网