题目内容
2.定长为6的线段MN的两端点在抛物线y2=4x上移动,设点P为线段MN的中点,则P到y轴距离的最小值为( )| A. | 6 | B. | 5 | C. | 3 | D. | 2 |
分析 先设出M,N的坐标,根据抛物线方程可求得其准线方程,进而可表示出M到y轴距离,根据抛物线的定义结合两边之和大于第三边且A,B,F三点共线时取等号判断出$\frac{|MF|+|NF|}{2}$的最小值即可.
解答 解:设M(x1,y1),N(x2,y2),抛物线的y2=4x准线x=-1,
P到y轴距离S=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{|MF|+|NF|}{2}$-1≥$\frac{|MN|}{2}$-1=3-1=2,
当且仅当M,N过F点时取等号,
故选:D.
点评 本小题主要考查抛物线的简单性质、利用不等式求最值等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
练习册系列答案
相关题目
17.
已知过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F2的直线交双曲线于A,B两点,连结AF1,BF1,若|AB|=|BF1|,且∠ABF1=90°,则双曲线的离心率为( )
| A. | 5-2$\sqrt{2}$ | B. | $\sqrt{5-2\sqrt{2}}$ | C. | 6-3$\sqrt{2}$ | D. | $\sqrt{6-3\sqrt{2}}$ |
7.已知实数p>0,直线4x+3y-2p=0与抛物线y2=2px和圆(x-$\frac{p}{2}$)2+y2=$\frac{{p}^{2}}{4}$从上到下的交点依次为A,B,C,D,则$\frac{|AC|}{|BD|}$的值为( )
| A. | $\frac{1}{8}$ | B. | $\frac{5}{16}$ | C. | $\frac{3}{8}$ | D. | $\frac{7}{16}$ |