题目内容

19.设集合A=($\frac{1}{3}$,$\frac{\sqrt{2}}{2}$],B={x|x2≤loga($\frac{3\sqrt{2}}{4}$x-a)},若A∩B=A,则实数a的取值范围为[$\frac{1}{4}$,$\frac{\sqrt{2}}{4}$].

分析 令f(x)=x2-loga($\frac{3\sqrt{2}}{4}$x-a),从而可得0<a<1,从而可得$\left\{\begin{array}{l}{\frac{3\sqrt{2}}{4}•\frac{1}{3}-a>0}\\{\frac{1}{2}≤lo{g}_{a}(\frac{3\sqrt{2}}{4}•\frac{\sqrt{2}}{2}-a)}\end{array}\right.$,从而解得.

解答 解:令f(x)=x2-loga($\frac{3\sqrt{2}}{4}$x-a),
∵A∩B=A,
∴($\frac{\sqrt{2}}{4}$-a,$\frac{3}{4}$-a]∈(0,+∞),
∴0<a<1,
∴f(x)=x2-loga($\frac{3\sqrt{2}}{4}$x-a)在其定义域上为增函数,
$\left\{\begin{array}{l}{\frac{3\sqrt{2}}{4}•\frac{1}{3}-a≥0}\\{\frac{1}{2}≤lo{g}_{a}(\frac{3\sqrt{2}}{4}•\frac{\sqrt{2}}{2}-a)}\end{array}\right.$,
解得,$\frac{1}{4}$≤a≤$\frac{\sqrt{2}}{4}$,
故答案为:[$\frac{1}{4}$,$\frac{\sqrt{2}}{4}$].

点评 本题考查了函数的性质的判断与应用及不等式的解法与应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网