题目内容
在△ABC中,AB=2,BC=3,∠ABC=60°,AD为BC边上的高,O为AD的中点,若=λ+μ,则λ+μ________.
抛物线的准线方程是 ,经过点的直线与抛物线相交于两点,且点恰为的中点,为抛物线的焦点,则 .
(本小题满分12分)已知二次函数对任意实数都满足,且.令.
(1)若函数在上的最小值为0,求的值;
(2)记函数,若函数有5个不同的零点,求实数的取值范围.
(本小题满分12分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.
(Ⅰ)证明:CD⊥平面PAE;
(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.
已知数列是等差数列,其前项和为,若首项且,有下列四个命题:;;数列的前项和最大;使的最大值为;
其中正确的命题个数为( )
A.1个 B.2个 C.3个 D.4个
(本小题满分12分)某班同学利用国庆节进行社会实践,对 [25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(1)补全频率分布直方图并求n、a、p的值;
(2)从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和期望E(X).
满足条件的集合A的个数为 .
椭圆上的一点到两焦点的距离的乘积为,则当取最大值时,点的坐标是 .
函数的定义域为________