题目内容
【题目】已知函数
,
.
(1)若曲线
在
处的切线方程为
,求实数
的值;
(2)设
,若对任意两个不等的正数
,都有
恒成立,求实数
的取值范围;
(3)若在
上存在一点
,使得
成立,求实数
的取值范围.
【答案】(1)
(2)
(3) ![]()
【解析】试题分析:(1)求出函数y的导数,可得切线的斜率,由切线方程可得a的方程,解得a即可;
(2)由题意可得即为
,令m(x)=h(x)﹣2x,可得m(x)在(0,+∞)递增,求出导数,令导数大于等于0,分离参数a,由二次函数的最值,即可得到a的范围;
(3)原不等式等价于
,整理得
,设
,求得它的导数m'(x),然后分a≤0、0<a≤e﹣1和a>e﹣1三种情况加以讨论,分别解关于a的不等式得到a的取值,最后综上所述可得实数a的取值范围.
试题解析:
(1)由
,得
.
由题意,
,所以
.
(2)
.
因为对任意两个不等的正数
,都有
恒成立,设
,
则
即
恒成立.
问题等价于函数
,即
在
上为增函数,
所以
在
上恒成立.即
在
上恒成立.
所以
,即实数
的取值范围是
.
(3)不等式
等价于
,整理得
.
设
,
由题意知,在
上存在一点
,使得
.
.
因为
,所以
,令
,得
.
①当
,即
时,
在
上单调递增.
只需
,解得
.
②当
即
时,
在
处取最小值.
令
即
,可得
.
令
,即
,不等式
可化为
.
因为
,所以不等式左端大于1,右端小于等于1,所以不等式不能成立.
③当
,即
时,
在
上单调递减,只需
,解得
.
综上所述,实数
的取值范围是
.
练习册系列答案
相关题目