题目内容
【题目】已知椭圆
的离心率
,且与直线
相切.
![]()
(1)求椭圆的标准方程;
(2)过椭圆上点
作椭圆的弦
,
,若
,
的中点分别为
,
,若
平行于
,则
,
斜率之和是否为定值?
【答案】(1)
(2)
,
斜率之和是为定值0.
【解析】
由离心率可得,
,由椭圆与直线
相切,联立方程
,得到关于
的一元二次方程的判别式为0,即
,进而求出
即可.
因为直线
平行于
,所以
,设直线
的方程
,
,
,联立方程
,得到关于
的一元二次方程,利用韦达定理求出
的值,代入
,化简求解即可.
(1)根据题意知,
,即
,
由
,消去
可得
,
因为椭圆
与直线
相切,
所以判断式
,
解得
,则
,
所以椭圆的标准方程为
.
(2)因为
,
的中点分别为
,
,直线
平行于
,
所以
,
设直线
的方程
,
,
,
联立方程
,解得
,
由韦达定理可得,
,
,
由中点坐标公式可得,
,
,
![]()
![]()
,
所以
,
斜率之和是为定值0.
练习册系列答案
相关题目
【题目】为了了解青少年的肥胖是否与常喝碳酸饮料有关,现对30名青少年进行调查,得到如下列联表:
常喝 | 不常喝 | 总计 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
总计 | 30 |
已知从这30名青少年中随机抽取1名,抽到肥胖青少年的概率为
.
(1)请将列联表补充完整;(2)是否有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关?
独立性检验临界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:
,其中n=a+b+c+d.