题目内容
12.已知△ABC的内角A,B,C的对边分别为a,b,c,且ctanC=$\sqrt{3}$(acosB+bcosA).(1)求角C;
(2)若c=2$\sqrt{3}$,求△ABC面积的最大值.
分析 (1)利用正弦定理与和差公式即可得出.
(2)利用余弦定理、基本不等式的性质、三角形面积计算公式即可得出.
解答 解:(1)ctanC=$\sqrt{3}$(acosB+bcosA),
由正弦定理可得:sinCtanC=$\sqrt{3}$(sinAcosB+sinBcosA)=$\sqrt{3}$sin(A+B)=$\sqrt{3}$sinC.
∴tanC=$\sqrt{3}$,C∈(0,π).
∴C=$\frac{π}{3}$.
(2)由余弦定理可得:12=c2=a2+b2-2abcosC≥2ab-ab=ab,
可得ab≤12,当且仅当a=2$\sqrt{3}$时取等号.
∴△ABC面积的最大值=$\frac{1}{2}×12×sin\frac{π}{3}$=3$\sqrt{3}$.
点评 本题考查了正弦定理余弦定理、三角形面积计算公式、和差公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
2.用计算器演算函数y=f(x)=xx,x∈(0,1)的若干值,可以猜想下列命题中真命题只能是( )
| A. | y=f(x)在区间(0,0.4)上递减 | B. | y=f(x)在区间(0.35,1)上递减 | ||
| C. | y=f(x)的最小值为f(0.4) | D. | y=f(x)在(0.3,0.4)上有最小值 |
7.已知集合A={x||x|≤4},B={y|y2+4y-21<0},则A∩B=( )
| A. | ∅ | B. | (-7,-4] | C. | (-7,4] | D. | [-4,3) |
17.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,则C的渐近线方程为( )
| A. | y=±$\frac{\sqrt{3}}{3}$x | B. | y=±$\sqrt{3}$x | C. | y=±2x | D. | y=±$\sqrt{5}$x |
4.设a,b为实数,若复数$\frac{1+3i}{a-bi}$=1-i(i为虚数单位),则( )
| A. | a=-1,b=-2 | B. | a=-1,b=2 | C. | a=1,b=2 | D. | a=1,b=-2 |
1.设a∈R,若复数z=$\frac{a-i}{3+i}$(i是虚数单位)的实部为2,则复数z的虚部为( )
| A. | 7 | B. | -7 | C. | 1 | D. | -1 |