题目内容
11.从装有编号为1,2,3,…,n+1的n+1个球的口袋中取出m个球(0<m≤n,m,n∈N),共有${C}_{n+1}^{m}$种取法.在这${C}_{n+1}^{m}$种取法中,不取1号球有C${\;}_{1}^{0}$${C}_{n}^{m}$种取法:必取1号球有${C}_{1}^{1}$${C}_{n}^{n-1}$种取法.所以${C}_{1}^{0}$${C}_{n}^{m}$+${C}_{1}^{1}$${C}_{m}^{m-1}$=${C}_{n+1}^{n}$,即${C}_{n}^{m}$+${C}_{n}^{m-1}$=${C}_{n+1}^{m}$成立,试根据上述思想,则有当1≤k≤m≤n,k,m,n∈N时,${C}_{n}^{m}$+${C}_{n}^{1}$${C}_{n}^{m-1}$+${C}_{n}^{2}$${C}_{n}^{m-2}$+…+${C}_{k}^{k}$${C}_{n}^{m-k}$=${C}_{n+k}^{m}$.分析 类比已知可得式子:Cnm+Cn1•Cnm-1+Cn2•Cnm-2+…+Ckk•Cnm-k中,从第一项到最后一项分别表示:从装有n个白球,k个黑球的袋子里,取出m个球的所有情况取法总数的和,故根据排列组合公式,可得答案.
解答 解:在Cnm+Cn1•Cnm-1+Cn2•Cnm-2+…+Ckk•Cnm-k中,
Cnm表示:从装有n个白球,取出m个球的所有情况,
Cn1•Cnm-1表示:从装有n个白球,1个黑球的袋子里,取出m个球的所有情况,
Cn2•Cnm-2表示:从装有n个白球,2个黑球的袋子里,取出m个球的所有情况,
…
Ckk•Cnm-k表示:从装有n个白球,k个黑球的袋子里,取出m个球的所有情况,
故${C}_{n}^{m}$+${C}_{n}^{1}$${C}_{n}^{m-1}$+${C}_{n}^{2}$${C}_{n}^{m-2}$+…+${C}_{k}^{k}$${C}_{n}^{m-k}$表示:从装有n+k球中取出m个球的不同取法数,即${C}_{n+k}^{m}$.
故答案为:${C}_{n+k}^{m}$
点评 这个题结合考查了推理和排列组合,处理本题的关键是熟练掌握排列组合公式,明白每一项所表示的含义,再结合已知条件进行分析,最后给出正确的答案
练习册系列答案
相关题目
6.随机变量ξ的概率分布列为P(ξ=n)=a($\frac{4}{5}$)n(n=0.1.2),其中a为常数,则P(0.1<ξ<2.9)的值为( )
| A. | $\frac{16}{25}$. | B. | $\frac{9}{16}$ | C. | $\frac{36}{61}$ | D. | $\frac{20}{61}$ |