题目内容
15.已知纸片Rt△ABC中,AB=AC=1,过顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC与桌面接触)使AD垂直于桌面,且二面角B-AD-C为直二面角.(1)求VD-ABC;
(2)求四面体D-ABC的表面积.
分析 (1)根据线面垂直及直二面角可得D为BC中点,且BD⊥CD,利用直角三角形的性质求出AD,BD,CD,得出棱锥的底面积和高;
(2)四面体的三个面为到腰直角三角形,一个面为正三角形,分别求出每个面的面积即可.
解答
解:(1)∵AD⊥平面BCD,BD?平面BCD,CD?平面BCD,
∴AD⊥BD,AD⊥CD,
∵Rt△ABC中,AB=AC=1,
∴D是BC的中点,∴BD=CD=AD=$\frac{\sqrt{2}}{2}$.
∴∠BDC为直二面角B-AD-C的平面角,即BD⊥CD.
∴VD-ABC=VA-BCD=$\frac{1}{3}{S}_{△BCD}•AD$=$\frac{1}{3}×\frac{1}{2}×\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{24}$.
(2)∵AD,BD,CD两两垂直,且AD=BD=CD=$\frac{\sqrt{2}}{2}$,
∴S△ABD=S△BCD=S△ACD=$\frac{1}{2}×\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2}=\frac{1}{4}$.
AB=BC=AC=1.
∴S△ABC=$\frac{\sqrt{3}}{4}×{1}^{2}$=$\frac{\sqrt{3}}{4}$.
∴四面体D-ABC的表面积S=S△ABD+S△BCD+S△ACD+S△ABC=$\frac{3+\sqrt{3}}{4}$.
点评 本题考查了棱锥的体积与表面积计算,属于基础题.
练习册系列答案
相关题目
6.某单位从包括甲、乙在内的5名应聘者中招聘2人,如果这5名应聘者被录用的机会均等,则甲、乙两人中至少有1人被录用的概率是( )
| A. | $\frac{3}{4}$ | B. | $\frac{7}{10}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
10.已知α,β是空间中两个不同的平面,m为平面β内的一条直线,则“α⊥β”是“m⊥α”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
20.
如图,M是以A、B为焦点的双曲线x2-y2=2右支上任一点,若点M到点C(3,1)与点B的距离之和为S,则S的取值范围是( )
| A. | [$\sqrt{26}$+$\sqrt{2}$,+∞) | B. | [$\sqrt{26}$-$2\sqrt{2}$,+∞) | C. | [$\sqrt{26}$-$2\sqrt{2}$,$\sqrt{26}$+$2\sqrt{2}$) | D. | [$\sqrt{26}$-$\sqrt{2}$,+∞) |