题目内容
已知复数z=
+
i,ω=
+
i.求复数zω+zω3的模及辐角主值.
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
解法一:将已知复数化为复数三角形式:z=
+
i=cos
+isin
,ω=
+
i=cos
+isin
依题意有zω+zω3
=(cos
+isin
)+(cos
+isin
)
=(cos
+cos
)+i(sin
+sin
)
=2cos
(cos
+isin
)
故复数zω+zω3的模为
,辐角主值为
.
解法二:zω+zω3
=zω(1+ω2)
=(
+
i)(
+
i)(1+i)
=
(-
i+
i)
=
(cos
+isin
)
| 1 |
| 2 |
| ||
| 2 |
| π |
| 3 |
| π |
| 3 |
| ||
| 2 |
| ||
| 2 |
| π |
| 4 |
| π |
| 4 |
依题意有zω+zω3
=(cos
| 7π |
| 12 |
| 7π |
| 12 |
| 13π |
| 12 |
| 13π |
| 12 |
=(cos
| 7π |
| 12 |
| 13π |
| 12 |
| 7π |
| 12 |
| 13π |
| 12 |
=2cos
| π |
| 4 |
| 5π |
| 6 |
| 5π |
| 6 |
故复数zω+zω3的模为
| 2 |
| 5π |
| 6 |
解法二:zω+zω3
=zω(1+ω2)
=(
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
=
| 2 |
| ||
| 2 |
| 1 |
| 2 |
=
| 2 |
| 5π |
| 6 |
| 5π |
| 6 |
练习册系列答案
相关题目
已知复数z=(
)2,则下列说法正确的是( )
| 3-i |
| 1+i |
| A、复数z在复平面上对应的点在第二象限 | ||
B、
| ||
| C、|z|=5 | ||
| D、复数z的实部与虚部之积为-12 |