题目内容
11.若函数f(x)=2x-3,且f(m+1)=5,则m=2.分析 由题意得2m+1-3=5,由此能求出m的值.
解答 解:∵f(x)=2x-3,且f(m+1)=5,
∴2m+1-3=5,
解得m=2.
故答案为:2.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
2.过抛物线y2=2px(p>0)焦点F的直线与双曲线x2-$\frac{{y}^{2}}{8}$=1的一条渐近线平行,并交其抛物线于A,B两点,若|AF|>|BF|,且|AF|=3,则抛物线方程为( )
| A. | y2=x | B. | y2=2x | C. | y2=4x | D. | y2=8x |
6.某兴趣小组有男生20人,女生10人,从中抽取一个容量为5的样本,恰好抽到2名男生和3名女生,则
①该抽样可能是系统抽样;
②该抽样可能是随机抽样:
③该抽样一定不是分层抽样;
④本次抽样中每个人被抽到的概率都是$\frac{1}{5}$.
其中说法正确的为( )
①该抽样可能是系统抽样;
②该抽样可能是随机抽样:
③该抽样一定不是分层抽样;
④本次抽样中每个人被抽到的概率都是$\frac{1}{5}$.
其中说法正确的为( )
| A. | ①②③ | B. | ②③ | C. | ②③④ | D. | ③④ |
3.已知双曲线C的中心在原点,焦点在y轴上,若双曲线C的一条渐近线与直线$\sqrt{3}x+y-4=0$平行,则双曲线C的离心率为( )
| A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
20.已知命题p:不等式ax2+ax+1>0的解集为R,则实数a∈(0,4);命题q“x2-2x-8>0”是“x>5”的必要不充分条件,则下列命题正确的是( )
| A. | p∧q | B. | p∧(¬q) | C. | (¬p)∧(¬q) | D. | (¬p)∧q |
1.若将函数f(x)=sin2x+cos2x的图象向左平移φ个单位,所得图象关于y轴对称,则φ的最小正值是( )
| A. | $\frac{π}{8}$ | B. | $\frac{π}{4}$ | C. | $\frac{3π}{8}$ | D. | $\frac{3π}{4}$ |