题目内容
若数列{an}的通项公式an=| 1 | (n+1)2 |
分析:本题考查的主要知识点是:归纳推理与类比推理,根据题目中已知的数列{an}的通项公式an=
(n∈N+),及f(n)=(1-a1)(1-a2)…(1-an),我们易得f(1),f(2),f(3)的值,观察f(1),f(2),f(3)的值的变化规律,不难得到f(n)的表达式.
| 1 |
| (n+1)2 |
解答:解:∵an=
(n∈N+)
∴a1=
=
,a2=
=
,a3=
=
又∵f(n)=(1-a1)(1-a2)…(1-an)
∴f(1)=1-a1=1-
=(1-
)(1+
)=
×
,
f(2)=(1-a1)(1-a2)=(1-
)(1-
)=
×
×
×
f(3)=(1-a1)(1-a2)(1-a3)=(1-
)(1-
)(1-
)=
×
×
×
×
×
…
由此归纳推理:
∴f(n)=(1-
)(1-
)[1-
]=(1-
)(1+
)(1-
)(1+
)(1-
)(1+
)
=
×
×
×
××
×
=
故答案为:
| 1 |
| (n+1)2 |
∴a1=
| 1 |
| (1+1)2 |
| 1 |
| 22 |
| 1 |
| (2+1)2 |
| 1 |
| 32 |
| 1 |
| (3+1)2 |
| 1 |
| 42 |
又∵f(n)=(1-a1)(1-a2)…(1-an)
∴f(1)=1-a1=1-
| 1 |
| 22 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
f(2)=(1-a1)(1-a2)=(1-
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
…
由此归纳推理:
∴f(n)=(1-
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| (n+1)2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| n+1 |
| 1 |
| n+1 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| n |
| n+1 |
| n+2 |
| n+1 |
| n+2 |
| 2n+2 |
故答案为:
| n+2 |
| 2n+2 |
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关题目