题目内容

若数列{an}的通项公式an=
1(n+1)2
(n∈N+)
,记f(n)=(1-a1)(1-a2)…(1-an),试通过计算f(1),f(2),f(3)的值,推测出f(n)=
 
分析:本题考查的主要知识点是:归纳推理与类比推理,根据题目中已知的数列{an}的通项公式an=
1
(n+1)2
(n∈N+)
,及f(n)=(1-a1)(1-a2)…(1-an),我们易得f(1),f(2),f(3)的值,观察f(1),f(2),f(3)的值的变化规律,不难得到f(n)的表达式.
解答:解:∵an=
1
(n+1)2
(n∈N+)

a1=
1
(1+1)2
=
1
22
a2=
1
(2+1)2
=
1
32
a3=
1
(3+1)2
=
1
42

又∵f(n)=(1-a1)(1-a2)…(1-an
f(1)=1-a1=1-
1
22
=(1-
1
2
)(1+
1
2
)=
1
2
×
3
2

f(2)=(1-a1)(1-a2)=(1-
1
22
)(1-
1
32
)=
1
2
×
3
2
×
2
3
×
4
3
f(3)=(1-a1)(1-a2)(1-a3)=(1-
1
22
)(1-
1
32
)(1-
1
42
)=
1
2
×
3
2
×
2
3
×
4
3
×
3
4
×
5
4


由此归纳推理:
f(n)=(1-
1
22
)(1-
1
32
)[1-
1
(n+1)2
]
=(1-
1
2
)(1+
1
2
)(1-
1
3
)(1+
1
3
)(1-
1
n+1
)(1+
1
n+1
)

=
1
2
×
3
2
×
2
3
×
4
3
××
n
n+1
×
n+2
n+1
=
n+2
2n+2

故答案为:
n+2
2n+2
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网