题目内容
公元263年左右,中国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”。下图是利用刘徽的“割圆术”设计的一个程序框图,则输出的值为( )(参考数据:
,
)
![]()
A.6 B.12 C.24 D.48
练习册系列答案
相关题目
题目内容
公元263年左右,中国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”。下图是利用刘徽的“割圆术”设计的一个程序框图,则输出的值为( )(参考数据:
,
)
![]()
A.6 B.12 C.24 D.48