题目内容
7.设全集U=R,A={x|x2-x-6≥0},B={x|x>1},则(∁UA)∪B=( )| A. | {x|x≥-2} | B. | {x|x>-2} | C. | {x|1<x<3} | D. | {x|1<x≤3} |
分析 解不等式得集合A,根据补集与并集的定义写出(∁UA)∪B.
解答 解:全集U=R,A={x|x2-x-6≥0}={x|x≤-2或x≥3},
B={x|x>1},
∴∁UA={x|-2<x<3},
∴(∁UA)∪B={x|x>-2}.
故选:B.
点评 本题考查了解不等式与补集和并集的运算问题,是基础题.
练习册系列答案
相关题目
17.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,以双曲线C的实轴为直径的圆Ω与双曲线的渐近线在第一象限交于点P,若kFP=-$\frac{b}{a}$,则双曲线C的渐近线方程为( )
| A. | y=±x | B. | y=±2x | C. | y=±3x | D. | y=±4x |
18.“|x-1|+|x+2|≤5”是“-3≤x≤2”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
12.
如图所示,在正方体ABCD-A1B1C1D1中,点G在棱AA1上,AG=$\frac{1}{3}$AA1,E,F分别是棱
C1D1,B1C1的中点,过E,F,G三点的截面α将正方体分成两部分,则正方体的四个侧面被截面α截得的上、下两部分面积之比为( )
C1D1,B1C1的中点,过E,F,G三点的截面α将正方体分成两部分,则正方体的四个侧面被截面α截得的上、下两部分面积之比为( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
19.已知函数f(x)=$\left\{{\begin{array}{l}{f({x+2}),x<3}\\{{{({\frac{1}{2}})}^x},x≥3}\end{array}}$,则f(-4)=( )
| A. | $\frac{1}{16}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
16.已知数列{an},若点(n,an)(n∈N*)在经过点(10,6)的定直线上,则数列{an}的前19项和S19的值为( )
| A. | 190 | B. | 114 | C. | 60 | D. | 120 |