题目内容
定义在[-2,2]上的奇函数f(x)在区间[0,2]上是减函数,若f(1-m)<f(m),则实数m的取值范围是( )
分析:可得f(x)在区间[-2,2]上单调递减,由题意可得
,解之可得.
|
解答:解:由奇函数的性质可得f(x)在区间[-2,2]上单调递减,
故可得
,解之可得-1≤m<
,
故选D.
故可得
|
| 1 |
| 2 |
故选D.
点评:本题考查函数的单调性和奇偶性,得出函数在区间[-2,2]上单调递减是解决问题的关键,属中档题.
练习册系列答案
相关题目