题目内容
函数f(x)=asin(x+
)+
sin(x-
)是偶函数,则a=
| π |
| 6 |
| 3 |
| π |
| 3 |
-1
-1
.分析:将f(x)=asin(x+
)+
sin(x-
)转化为f(x)=
(a+1)sinx+(
-
)cosx,利用偶函数的概念可求得a的值.
| π |
| 6 |
| 3 |
| π |
| 3 |
| ||
| 2 |
| a |
| 2 |
| 3 |
| 2 |
解答:解:∵f(x)=asin(x+
)+
sin(x-
)
=a(
sinx+
cosx)+
(
sinx-
cosx)
=
(a+1)sinx+(
-
)cosx为偶函数,
∴f(-x)=f(x),
∴a+1=0,
∴a=-1.
故答案为:-1.
| π |
| 6 |
| 3 |
| π |
| 3 |
=a(
| ||
| 2 |
| 1 |
| 2 |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
=
| ||
| 2 |
| a |
| 2 |
| 3 |
| 2 |
∴f(-x)=f(x),
∴a+1=0,
∴a=-1.
故答案为:-1.
点评:本题考查三角函数的化简,考查函数的奇偶性,求得f(x)=
(a+1)sinx+(
-
)cosx是关键,属于中档题.
| ||
| 2 |
| a |
| 2 |
| 3 |
| 2 |
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=5sin(
| ||||
B、f(x)=5sin(
| ||||
C、f(x)=5sin(
| ||||
D、f(x)=5sin(
|