题目内容

设数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log4|an|,求数列{
1
bnbn+2
}前n项和Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出a1=-
1
4
,an+1-an=5an+1,由此能求出an=(-
1
4
)n

(Ⅱ)由bn=log4|(-
1
4
)n|=-n
,得
1
bnbn+2
=
1
2
1
n
-
1
n+2
),由此利用错位相减法能求出数列{
1
bnbn+2
}前n项和Tn
解答: (Ⅰ)解:当n=1时,a1=5S1+1,解得a1=-
1
4
.…(2分)
又∵an=5Sn+1,an+1=5Sn+1+1,
∴an+1-an=5an+1,…(4分)
an+1
an
=-
1
4
,∴数列{an}是首项为a1=-
1
4
,公比为q=-
1
4
的等比数列,
an=(-
1
4
)n
.…(6分)
(Ⅱ)解:bn=log4|(-
1
4
)n|=-n
,…(8分)
1
bnbn+2
=
1
n(n+2)
=
1
2
1
n
-
1
n+2
),…(10分)
Tn=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+…+(
1
n
-
1
n+2
)]

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
4
-
2n+3
(n+1)(n+2)
.…(12分)
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网