题目内容
设数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log4|an|,求数列{
}前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log4|an|,求数列{
| 1 |
| bn•bn+2 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出a1=-
,an+1-an=5an+1,由此能求出an=(-
)n.
(Ⅱ)由bn=log4|(-
)n|=-n,得
=
(
-
),由此利用错位相减法能求出数列{
}前n项和Tn.
| 1 |
| 4 |
| 1 |
| 4 |
(Ⅱ)由bn=log4|(-
| 1 |
| 4 |
| 1 |
| bnbn+2 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| bn•bn+2 |
解答:
(Ⅰ)解:当n=1时,a1=5S1+1,解得a1=-
.…(2分)
又∵an=5Sn+1,an+1=5Sn+1+1,
∴an+1-an=5an+1,…(4分)
∴
=-
,∴数列{an}是首项为a1=-
,公比为q=-
的等比数列,
∴an=(-
)n.…(6分)
(Ⅱ)解:bn=log4|(-
)n|=-n,…(8分)
∴
=
=
(
-
),…(10分)
∴Tn=
[(1-
)+(
-
)+…+(
-
)]
=
(1+
-
-
)
=
-
.…(12分)
| 1 |
| 4 |
又∵an=5Sn+1,an+1=5Sn+1+1,
∴an+1-an=5an+1,…(4分)
∴
| an+1 |
| an |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
∴an=(-
| 1 |
| 4 |
(Ⅱ)解:bn=log4|(-
| 1 |
| 4 |
∴
| 1 |
| bnbn+2 |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 2n+3 |
| (n+1)(n+2) |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目