题目内容
6.已知集合M={x|x2-3x-4≤0},集合N={x|lnx≥0},则M∩N=( )| A. | {x|1≤x≤4} | B. | {x|x≥1} | C. | {x|-1≤x≤4} | D. | {x|x≥-1} |
分析 先求出集合M和集合N,由此利用交集定义能求出M∩N.
解答 解:∵集合M={x|x2-3x-4≤0}={x|-1≤x≤4},
集合N={x|lnx≥0}{x|x≥1},
∴M∩N={x|1≤x≤4}.
故选:A.
点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.
练习册系列答案
相关题目
16.若函数f(x)=(x-1)(x+2)(x2+ax+b)是偶函数,则f(x)的最小值为( )
| A. | -$\frac{25}{4}$ | B. | $\frac{7}{4}$ | C. | -$\frac{9}{4}$ | D. | $\frac{41}{4}$ |
14.已知集合A={x|(x+1)(x-2)≥0},B={x|log3(2-x)≤1},则A∩(∁RB)=( )
| A. | ∅ | B. | {x|x≤-1,x>2} | C. | {x|x<-1} | D. | {x|x<-1,x≥2} |
18.设α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),且$\frac{sinα}{cosα}$=$\frac{cosβ}{1-sinβ}$,则( )
| A. | 2α+β=$\frac{π}{2}$ | B. | 2α-β=$\frac{π}{2}$ | C. | α+2β=$\frac{π}{2}$ | D. | α-2β=$\frac{π}{2}$ |