题目内容

11.已知椭圆E的左、右焦点分别为F1、F2,过F1且斜率为$\frac{4}{3}$的直线交椭圆E于P、Q两点,若△PF1F2为直角三角形,则椭圆E的离心率为(  )
A.$\frac{5}{7}$B.$\frac{1}{3}$C.$\frac{\sqrt{7}}{7}$或$\frac{5}{7}$D.$\frac{5}{7}$或$\frac{1}{3}$

分析 通过椭圆的定义可得PF1、PF2,利用勾股定理及离心率公式计算即得结论.

解答 解:由题可知:$\frac{P{F}_{2}}{P{F}_{1}}=\frac{4}{3}$,即PF2=$\frac{4}{3}$PF1
又PF2+PF1=2a,∴PF1=$\frac{6}{7}$a,PF2=$\frac{8}{7}$a,
由勾股定理可知:$4{c}^{2}=(\frac{6}{7}a)^{2}+(\frac{8}{7}a)^{2}=\frac{100}{49}{a}^{2}$,
即:${c}^{2}=\frac{25}{49}{a}^{2}$,
∴$(\frac{c}{a})^{2}=\frac{25}{49}$,则e=$\frac{5}{7}$;
或$\frac{P{F}_{2}}{{F}_{1}{F}_{2}}=\frac{4}{3}$,$P{F}_{2}=\frac{8}{3}c$,则$P{F}_{1}=2a-\frac{8}{3}c$,
由$P{{F}_{1}}^{2}={F}_{1}{{F}_{2}}^{2}+P{{F}_{2}}^{2}$,解得e=$\frac{1}{3}$.
故选:D.

点评 本题考查求椭圆的离心率,涉及到三角函数的定义、勾股定理等基础知识,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网