题目内容
8.已知sinθ+cosθ=$\frac{1}{3}$,θ∈(0,π),则cosθ-sinθ=$-\frac{\sqrt{17}}{3}$.分析 利用平方关系可得求解.
解答 解:∵sinθ+cosθ=$\frac{1}{3}$,
∴(sinθ+cosθ)2=$\frac{1}{9}$
∴2sinθcosθ=$-\frac{8}{9}$<0
∵θ∈(0,π),
∴θ∈($\frac{π}{2}$,π),
则sinθ>0,cosθ<0
那么:cosθ-sinθ<0.
∴(cosθ-sinθ)2=(sinθ+cosθ)2-4sinθcosθ=$\frac{1}{9}+\frac{16}{9}$=$\frac{17}{9}$.
∴cosθ-sinθ=$-\frac{\sqrt{17}}{3}$.
故答案为:$-\frac{\sqrt{17}}{3}$.
点评 本题考查同角三角函数基本关系式,平方的利用,考查了计算能力,属于基础题.
练习册系列答案
相关题目
18.某四面体的三视图如图所示,则该四面体的体积是( )

| A. | $\frac{128}{3}$ | B. | $\frac{32}{3}$ | C. | $\frac{64}{3}$ | D. | 32 |
16.在极坐标系中,点(-2,$\frac{π}{6}$)的位置,可按如下规则确定( )
| A. | 作射线OP,使∠xOP=$\frac{π}{6}$,再在射线OP上取点M,使|OM|=2 | |
| B. | 作射线OP,使∠xOP=$\frac{7π}{6}$,再在射线OP上取点M,使|OM|=2 | |
| C. | 作射线OP,使∠xOP=$\frac{7π}{6}$,再在射线OP上反向延长线取点M,使|OM|=2 | |
| D. | 作射线OP,使∠xOP=-$\frac{π}{6}$,再在射线OP的上取点M,使|OM|=2 |
3.下列推理是演绎推理的是( )
| A. | 由圆x2+y2=r2的面积S=πr2,猜想椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的面积S=πab | |
| B. | 由金、银、铜、铁可导电,猜想:金属都可导电 | |
| C. | 猜想数列$\frac{1}{1•2}$,$\frac{1}{2•3}$,$\frac{1}{3•4}$的通项公式为an=$\frac{1}{n(n+1)}$(n∈N*) | |
| D. | 半径为r的圆的面积S=πr2,则单位圆的面积S=π |
20.${({x-\frac{1}{x}})^9}$的展开式中x3的系数为( )
| A. | -36 | B. | 36 | C. | -84 | D. | 84 |
17.已知复数z=1-i,则1+z2=( )
| A. | 2 | B. | 1-2 | C. | 2i | D. | 1-2i |