题目内容

12.已知y=f(x)是偶函数,y=g(x)是奇函数,它们的定义域均为[-3,3],且它们在x∈[0,3]上的图象如图所示,则不等式f(x)•g(x)<0的解集是(  )
A.(0,1)∪(2,3)B.(-2,-1)∪(0,1)∪(2,3)
C.(-1,0)∪(-3,-2)∪(0,1)∪(2,3)D.(-3,-1)∪(0,1)∪(2,3)

分析 根据函数奇偶性的性质,分别求出不等式对应的解集,进行分类讨论进行求解即可.

解答 解:∵y=f(x)是偶函数,y=g(x)是奇函数,它们的定义域均为[-3,3],
∴由图象知,f(x)>0得解集为(0,2)∪(-2,0),f(x)<0得解集为[-3,-2)∪[(2,3],
g(x)>0得解集为(-1,0)∪(1,3),g(x)<0得解集为(-3,-1)∪(0,1),
若f(x)•g(x)<0,
则$\left\{\begin{array}{l}{f(x)>0}\\{g(x)<0}\end{array}\right.$或$\left\{\begin{array}{l}{f(x)<0}\\{g(x)>0}\end{array}\right.$,
即g$\left\{\begin{array}{l}{0<x<2或-2<x<0}\\{-3<x<-1或0<x<1}\end{array}\right.$或$\left\{\begin{array}{l}{-3≤x<-2或2<x≤3}\\{-1<x<0或1<x<3}\end{array}\right.$,
即0<x<1或-2<x<-1或2<x<3,
即不等式f(x)•g(x)<0的解集为(-2,-1)∪(0,1)∪(2,3),
故选:B

点评 本题主要考查不等式的求解,根据函数奇偶性的性质以及数形结合是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网