题目内容

14.设集合A=[0,1),B=[1,2],函数f(x)=$\left\{\begin{array}{l}x+\frac{1}{2},x∈A\\ 2({1-x}),x∈B\end{array}$,若x0∈A,且f[f(x0)]∈A,则x0的取值为$\frac{1}{2}$.

分析 由已知得0≤x0<1,从而$f({x}_{0})={x}_{0}+\frac{1}{2}$∈[$\frac{1}{2}$,$\frac{3}{2}$),由f(x0)∈[$\frac{1}{2},1$)和f(x0)∈[$1,\frac{3}{2}$)两种情况分类讨论经,能求出x0的取值.

解答 解:∵集合A=[0,1),B=[1,2],
函数f(x)=$\left\{\begin{array}{l}x+\frac{1}{2},x∈A\\ 2({1-x}),x∈B\end{array}$,x0∈A,且f[f(x0)]∈A,
∴0≤x0<1,∴$f({x}_{0})={x}_{0}+\frac{1}{2}$∈[$\frac{1}{2}$,$\frac{3}{2}$),
当f(x0)∈[$\frac{1}{2},1$)时,即x0∈[0,$\frac{1}{2}$)时,
f[f(x0)]=f(${x}_{0}+\frac{1}{2}$)=x0+1∈[1,2),
∵f[f(x0)]∈A,∴x0+1∈[0,1),不成立;
当f(x0)∈[$1,\frac{3}{2}$)时,即x0∈[$\frac{1}{2}$,1)时,
f[f(x0)]=f(${x}_{0}+\frac{1}{2}$)=2(1-${x}_{0}-\frac{1}{2}$)=1-2x0
∵f[f(x0)]∈A,即1-2x0∈[0,1),
由x0∈[$\frac{1}{2}$,1),得1-2x0∈(-1,0],
∴1-2x0=0,解得x0=$\frac{1}{2}$.
综上,x0=0.
故答案为:$\frac{1}{2}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网