题目内容
下列各组函数是同一函数的是( )
A.y=
| B.y=|x-2|与y=x-2(x≥2) | ||
| C.y=|x+1|+|x|与y=2x+1 | D.y=
|
A、由于y=
的定义域是{x|x≠0},y=2的定义域是R,所以y=
与y=2不是同一函数,故A不成立;
B、由于y=|x-2|的定义域是R,y=x-2(x≥2)的定义域是{x|x≥2},所以y=|x-2|与y=x-2(x≥2)不是同一函数,故B不成立;
C、由于y=|x+1|+|x|与y=2x+1的定义域是R,而在x≤-1时,y=|x+1|+|x|=-2x-1,所以y=|x+1|+|x|与y=2x+1不是同一函数,故C不成立;
D、由于y=
的定义域是{x|x≠-1},y=x(x≠-1)的定义域是{x|x≠-1},而y=
=
=x,所以y=
与y=x(x≠-1)是同一函数,故D成立.
故答案为 D.
| 2|x| |
| x |
| 2|x| |
| x |
B、由于y=|x-2|的定义域是R,y=x-2(x≥2)的定义域是{x|x≥2},所以y=|x-2|与y=x-2(x≥2)不是同一函数,故B不成立;
C、由于y=|x+1|+|x|与y=2x+1的定义域是R,而在x≤-1时,y=|x+1|+|x|=-2x-1,所以y=|x+1|+|x|与y=2x+1不是同一函数,故C不成立;
D、由于y=
| x2+x |
| x+1 |
| x2+x |
| x+1 |
| (x+1)x |
| x+1 |
| x2+x |
| x+1 |
故答案为 D.
练习册系列答案
相关题目
下列各组函数是同一函数的是( )
①f(x)=
与g(x)=x
;
②f(x)=|x|与g(x)=
;
③f(x)=x0与g(x)=1;
④f(x)=x2-2x-1与g(t)=t2-2t-1.
①f(x)=
| -2x3 |
| -2x |
②f(x)=|x|与g(x)=
| x2 |
③f(x)=x0与g(x)=1;
④f(x)=x2-2x-1与g(t)=t2-2t-1.
| A、①② | B、①③ | C、②④ | D、③④ |
下列各组函数是同一函数的是( )
①f(x)=
与g(x)=x
;
②f(x)=x与g(x)=
;
③f(x)=x0与g(x)=
;
④f(x)=x2-2x-1与g(t)=t2-2t-1.
①f(x)=
| -2x3 |
| -2x |
②f(x)=x与g(x)=
| x2 |
③f(x)=x0与g(x)=
| 1 |
| x0 |
④f(x)=x2-2x-1与g(t)=t2-2t-1.