题目内容
11.若α为锐角,3sinα=tanα=$\sqrt{2}$tanβ,则tan2β等于( )| A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | -$\frac{3}{4}$ | D. | -$\frac{4}{3}$ |
分析 利用同角三角的基本关系求得cosα的值,可得tanα的值,从而求得tanβ的值,再利用二倍角的正切公式求得tan2β的值.
解答 解:∵α为锐角,3sinα=tanα=$\sqrt{2}$tanβ,∴cosα=$\frac{1}{3}$,∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{2\sqrt{2}}{3}$,∴tanα=$\frac{sinα}{cosα}$=2$\sqrt{2}$,
∴tanβ=$\frac{\sqrt{2}}{2}$tanα=2,∴tan2β=$\frac{2tanβ}{{1-tan}^{2}β}$=-$\frac{4}{3}$,
故选:D.
点评 本题主要考查同角三角的基本关系,二倍角的正切公式的应用,属于基础题.
练习册系列答案
相关题目
1.已知双曲线C的左右焦点为F1,F2,P双曲线右支上任意一点,若以F1为圆心,以$\frac{1}{2}$|F1F2|为半径的圆与以P为圆心,|PF2|为半径的圆相切,则C的离心率为( )
| A. | $\sqrt{2}$ | B. | 2 | C. | 4 | D. | $\sqrt{3}$ |
2.如图是一个算法的程序框图,该算法所输出的结果是( )

| A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{6}$ |
6.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线经过圆x2+y2-4x+2y=0的圆心,焦点到渐近线的距离为2,则双曲线C的标准方程是( )
| A. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1 | D. | x2-$\frac{{y}^{2}}{4}$=1 |
3.点P(sin2θ,sinθ)位于第三象限,那么θ是第( )象限角.
| A. | 一 | B. | 二 | C. | 三 | D. | 四 |
20.已知z1=(m2+m+1)+(m2+m-4)i(m∈R),z2=3-2i,则“m=1”是“z1=z2”的( )条件.
| A. | 充分不必要 | B. | 必要不充分 | C. | 充要 | D. | 非充分非必要 |