题目内容
(本大题满分12分)已知集合,;
(1)若,求;
(2)若,求实数的取值范围.
选修4-5:不等式证明选讲
已知.
(1)解不等式;
(2)若关于的不等式对任意的恒成立,求的取值范围.
(本小题12分)
已知,两个命题,函数在内单调递减;曲线与轴交于不同两点,如果是假命题,是真命题,求实数a的取值范围.
已知,用表示=___________.
若集合,则( )
A. B. C. D.
某学生离家去学校,由于怕迟到,所以一开始就匀速跑步,等跑累了再匀速走余下的路程.在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图的四个图形中较符合该学生走法的是( )
是函数的单调递增区间___________.
如果,那么正确的结论是( )
如图,地图上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高位10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.
(1)若圆形标志物半径为25m,以PG所在直线为X轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;
(2)若在点P处观测该圆形标志的最大视角(即)的正切值为,求该圆形标志物的半径.