题目内容
执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( )
A.[-3,4] B.[-5,2]
C.[-4,3] D.[-2,5]
A 因为t∈[-1,3],当t∈[-1,1)时,s=3t∈[-3,3);当t∈[1,3]时,s=4t-t2=-(t2-4t)=-(t-2)2+4∈[3,4],所以s∈[-3,4].
在极坐标系中,求点到直线ρsinθ=2的距离.
如图, 弦AB与CD相交于⊙O内一点E,过E作BC的平行线与AD的延长线相交于点P.已知PD=2DA=2, 求PE.
设不等式|x-2|<a(a∈N*)的解集为A,且∈A,A.
(1) 求a的值;
(2) 求函数f(x)=|x+a|+|x-2|的最小值.
在等差数列{an}中,首项a1=120,公差d=-4,若Sn≤an(n≥2),则n的最小值为( )
A.60 B.62
C.70 D.72
设数列{an}满足a1+2a2=3,且对任意的n∈N*,点列{Pn(n,an)}恒满足PnPn+1=(1,2),则数列{an}的前n项和Sn为________.
已知数列{2n-1·an}的前n项和Sn=1-.
(1)求数列{an}的通项公式;
(2)设bn=,求数列的前n项和.
设定义在(0,+∞)上的函数f(x)=ax++b(a>0).
(1)求f(x)的最小值;
(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b的值.
向量a,b,c满足:|a|=1,|b|=,b在a方向上的投影为,(a-c)·(b-c)=0,则|c|的最大值是________.