题目内容
设数列{an}满足:当n=2k-1(k∈N*)时,an=n;当n=2k(k∈N*)时,an=ak.(1)求a2+a4+a6+a8+a10+a12+a14+a16;
(2)若Sn=a1+a2+a3+…+a2n-1+a2n,证明:Sn=4n-1+Sn-1(n≥2);
(3)证明:
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 4n |
分析:(1)根据题设中数列的通项公式可求得原式=4a1+2a3+a5+a7求得答案.
(2)先把前n中,奇数项和偶数项分别计算,利用等差数列的求和公式求得(a1+a3+a5++a2n-1)=4n-1,代入即可求得答案.
(3)由2)知:Sn-Sn-1=4n-1,进而用叠加法求得Sn,进而利用
=
<
利用等比数列的求和公式,求得
+
+…+
<1-
(2)先把前n中,奇数项和偶数项分别计算,利用等差数列的求和公式求得(a1+a3+a5++a2n-1)=4n-1,代入即可求得答案.
(3)由2)知:Sn-Sn-1=4n-1,进而用叠加法求得Sn,进而利用
| 1 |
| Sn |
| 3 |
| 4n+2 |
| 3 |
| 4n |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 4n |
解答:解:(1)原式=a1+a2+a3+a4+a5+a6+a7+a8
=a1+a1+a3+a1+a5+a3+a7+a1
=4a1+2a3+a5+a7
=4×1+2×3+5+7
=22
(2)Sn=a1+a2+a3++a2n-1+a2n
=(a1+a3+a5++a2n-1)+(a2+a4+a6++a2n)
=[1+3+5++(2n-1)]+(a2+a4+a6++a2n)
=4n-1+(a2+a4+a6++a2n)
=4n-1+(a1+a2++a2n-1)
=4n-1+Sn-1
(3)由2)知:Sn-Sn-1=4n-1,于是有:Sn-1-Sn-2=4n-2,Sn-2-Sn-3=4n-3,S2-S1=4,
上述各式相加得:Sn=S1+4+42++4n-1
=2+4+42++4n-1
=
(4n+2),
∴
=
<
,
∴
+
++
<
(1+
+
++
)=1-
.
=a1+a1+a3+a1+a5+a3+a7+a1
=4a1+2a3+a5+a7
=4×1+2×3+5+7
=22
(2)Sn=a1+a2+a3++a2n-1+a2n
=(a1+a3+a5++a2n-1)+(a2+a4+a6++a2n)
=[1+3+5++(2n-1)]+(a2+a4+a6++a2n)
=4n-1+(a2+a4+a6++a2n)
=4n-1+(a1+a2++a2n-1)
=4n-1+Sn-1
(3)由2)知:Sn-Sn-1=4n-1,于是有:Sn-1-Sn-2=4n-2,Sn-2-Sn-3=4n-3,S2-S1=4,
上述各式相加得:Sn=S1+4+42++4n-1
=2+4+42++4n-1
=
| 1 |
| 3 |
∴
| 1 |
| Sn |
| 3 |
| 4n+2 |
| 3 |
| 4n |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n-1 |
| 1 |
| 4n |
点评:本题主要考查了数列与不等式的综合.考查了不等式的性质在数列中的应用.
练习册系列答案
相关题目