题目内容


如图,△ABC中,AC=BC=AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.

(1)求证:GF∥底面ABC;

(2)求证:AC⊥平面EBC;

(3)求几何体ADEBC的体积V.


 [解] (1)证明:连接AE,如下图所示.

∵ADEB为正方形,

∴AE∩BD=F,且F是AE的中点,

又G是EC的中点,

∴GF∥AC,又AC⊂平面ABC,GF⊄平面ABC,

∴GF∥平面ABC.

(2)证明:∵ADEB为正方形,∴EB⊥AB,

又∵平面ABED⊥平面ABC,平面ABED∩平面ABC=AB,EB⊂平面ABED,

∴BE⊥平面ABC,∴BE⊥AC.

又∵AC=BC=AB,

∴CA2+CB2=AB2,

∴AC⊥BC.

又∵BC∩BE=B,∴AC⊥平面BCE.

(3)取AB的中点H,连GH,∵BC=AC=AB=

∴CH⊥AB,且CH=,又平面ABED⊥平面ABC

∴GH⊥平面ABCD,∴V=×1×.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网