题目内容

关于x的方程x2-(2+i)x-2ab+(a+b)i=0(a、b∈R)有实数解
(1)求a、b取值范围
(2)求实根的最大值与最小值.
考点:复数相等的充要条件
专题:数系的扩充和复数
分析:(1)由关于x的方程x2-(2+i)x-2ab+(a+b)i=0(a、b∈R)即x2-2x-2ab+(a+b-x)i=0有实数解,可得x2-2x-2ab=a+b-x=0,化为(a-1)2+(b-1)2=2.
令a=1+
2
cosθ,b=1+
2
sinθ
,θ∈[0,2π).即可得出..
(2)由于x=a+b=2+2sin(θ+
π
4
)
∈[0,4],即可得出.
解答: 解:(1)∵关于x的方程x2-(2+i)x-2ab+(a+b)i=0(a、b∈R)即x2-2x-2ab+(a+b-x)i=0有实数解,
∴x2-2x-2ab=a+b-x=0,
∴(a+b)2-2(a+b)-2ab=0,
化为a2+b2-2a-2b=0,即(a-1)2+(b-1)2=2.
令a=1+
2
cosθ,b=1+
2
sinθ
,θ∈[0,2π).
∴a,b∈[1-
2
,1+
2
]

(2)x=a+b=2+2sin(θ+
π
4
)
∈[0,4],
∴实根的最大值与最小值分别为4,0.
点评:本题考查了复数的运算法则、复数相等、三角函数的值域、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网