题目内容
设函数,则的零点位于区间( )
A.(-1,0) B.(0,1) C.(1,2) D.(2,3)
一个几何体是由圆柱和三棱锥组合而成,点A、B、C在圆柱上底面圆O的圆周上,平面,,,其正视图、侧视图如图所示.
(1)求证:;
(2)求锐二面角的大小.
已知是两条不同的直线,是三个不同的平面,则下列命题中正确的是( )
A.若
B.若
C.若
D.若
在△OAB中,O为直角坐标系的原点,A,B的坐标分别为A(3,4),B(-2,y),向量与x轴平行,则向量与所成角的余弦值是( )
A. B. C. D.
把“二进制”数化为“五进制”数是 ( )
给出下列关于互不相同的直线和平面的四个命题,其中正确命题的个数是
(1),点则与m不共面;
(2)是异面直线,且则;
(3)若则;
(4)若,则,
(5)若,,则
A.1个 B.2个 C.3个 D.4个
已知函数.
(1)求函数在区间上的最值;
(2)若(其中为常数),当时,设函数的3个极值点为,且,证明:.
选修4—5:不等式选讲.
设函数.
(1)若不等式的解集为,求的值;
(2)若存在,使,求的取值范围.
已知,则函数( )
A. B.
C. D.