题目内容

lim
n→∞
1+
1
2
+
1
22
+…+
1
2n
1-
1
2
+
1
22
-…+(-1)n
1
2n
=______.
当n为偶数时,
lim
n→∞
1+
1
2
+
1
22
+…+
1
2n
1-
1
2
+
1
22
-…+(-1)n
1
2n

=
lim
n→∞
1×(1-(
1
2
)
n
)
1-
1
2
(1+
1
22
+
1
24
+…+
1
2n
) -(
1
2
+
1
23
+…+
1
2n-1
)   

=
lim
n→∞
2-
2
2n
1-
1
2
n
2
1-
1
2
-
1
2
(1-
1
2
n
2
)
1-
1
2

=
lim
n→∞
2-
2
2n
2-
2
2
n
2
-1+
1
2
n
2
=2.
当n为奇数时,
lim
n→∞
1+
1
2
+
1
22
+…+
1
2n
1-
1
2
+
1
22
-…+(-1)n
1
2n

=
lim
n→∞
1-
1
2n
1-
1
2
(1+
1
22
+
1
24
+…+
1
2n-1
) -(
1
2
+
1
23
+…+
1
2n
)    

=
lim
n→∞
2-
2
2n
1-
1
2
n+1
2
1-
1
2
-
1
2
(1-
1
2
n-1
2
)
1-
1
2

=
lim
n→∞
2-
2
2n
2-
2
2
n+1
2
-1+
1
2
n-1
2

=2.
lim
n→∞
1+
1
2
+
1
22
+…+
1
2n
1-
1
2
+
1
22
-…+(-1)n
1
2n
=2.
答案:2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网