题目内容
(2009•金山区二模)计算:
=
.
| lim |
| n→+∞ |
1+
| ||||||
1-
|
| 8 |
| 3 |
| 8 |
| 3 |
分析:由等比数列的求和公式,把
等价转化为
,进而简化为
,由此能求出结果.
| lim |
| n→+∞ |
1+
| ||||||
1-
|
| lim |
| n→+∞ |
| ||||||
|
| lim |
| n→+∞ |
2[1-(
| ||||
|
解答:解:
=
=
=
.
故答案为:
.
| lim |
| n→+∞ |
1+
| ||||||
1-
|
=
| lim |
| n→+∞ |
| ||||||
|
=
| lim |
| n→+∞ |
2[1-(
| ||||
|
=
| 8 |
| 3 |
故答案为:
| 8 |
| 3 |
点评:本题考查数列的极限的求法,解题时要认真审题,注意等比数列前n项和公式的灵活运用.
练习册系列答案
相关题目