题目内容

已知3sin2θ=4
2
cosθ,且θ∈(
π
2
,π),则tan2θ=
 
分析:利用3sin2θ=4
2
cosθ,且θ∈(
π
2
,π),求出sinθ、cosθ,可得tanθ,再利用二倍角的正切公式可得结论.
解答:解:∵3sin2θ=4
2
cosθ,
∴6sinθcosθ=4
2
cosθ,
∴sinθ=
2
2
3

∵θ∈(
π
2
,π),
∴cosθ=-
1
3

∴tanθ=-2
2

∴tan2θ=
2tanθ
1-tan2θ
=
-4
2
1-8
=
4
2
7

故答案为:
4
2
7
点评:本题考查二倍角的正切公式,考查同角三角函数关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网