题目内容

3.已知复数$z=\frac{(1-i)+2(1+i)}{2-i}$,若z2+az+b=1-i,
(1)求z;
(2)求实数a,b的值.

分析 (1)直接利用复数代数形式的乘除运算化简得答案;
(2)把(1)中求得的z代入z2+az+b=1-i,整理后利用复数相等的条件列式求得a,b的值.

解答 解:(1)$z=\frac{(1-i)+2(1+i)}{2-i}$=$\frac{3+i}{2-i}=\frac{(3+i)(2+i)}{(2-i)(2+i)}=\frac{5+5i}{5}=1+i$;
(2)由z2+az+b=1-i,得(1+i)2+a(1+i)+b=1-i,
∴a+b+(a+2)i=1-i,
则$\left\{\begin{array}{l}{a+b=1}\\{a+2=-1}\end{array}\right.$,解得a=-3,b=4.

点评 本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础的计算题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网